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Why Does Open Source Software Exist?

66WWUDUDQQGGHHG�G�55HHVVRRXXUFUFHVHV

&&RRDDVVH�H�//RRFDFDOOLL]]DDWWLLRRQQ

1970-80s: (UD�RI�WKH�6RIWZDUH�)LUP
(costly data transport drives structure)

RESULT: Innovation is enabled,
but “ invisible hand” is limited

RESULT: “ Invisible
hand” is un leashed 

Source: “Software Cooperatives” by Terry Bollinger (http://www.terrybollinger.com/)

1990s-on: )UHH�0DUNHW
(cheap transport dominates)
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What are the Business Consequences?

FUTURE: &RRSHUDWLYHV (OSS, barter-based) and eventually,

                 &RQVRUWLD (fee-based) jointly dominate the market:

Global Project A Global Project B Global Project C

REASON: “self-selecting” groups retain free-market innovation & speed
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What are the Security Consequences?

•  Self-selecting g roup s with high internal cohesion dominate
•  Infiltration is harder than for traditionally managed groups
•  Filtering effect speeds inno vation while slowing infiltration 

Self-Selected Group A Self-Selected Group B Self-Selected Group C

IMPLICATION: Self-selection of groups can directly benefit security
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How Does Ownership Work in Open Source?

� Schoolhou se (e.g., GPL)
� Jointly & voluntarily built. All may use it, but no one

person or group owns it.
� “Once a schoolhouse, always a schoolhouse”: Parts

may be reused, but only to build more schoolhouses.

� Public Service (e.g., BSD, Artistic)
� Jointly built using voluntary donations, but allows

reassignment as private property (e.g., Apple OS X)
� The most popular alternative to the GPL License

� Liberal Lease (e.g., LGPL)
� Parts remain “property of the school,” but can be freely

reused to enhance the value of private property
� Popular with small businesses that rely on open source



Copyright 2005 by Terry Bollinger. BLT 1.1 applies (see final slide). 6

What About Traditional Software Firms?

� The profit incentive remains intact!
� Consortia “flatten the playing field”…
� … but they do not remove classic profit incentives
� Ironically, companies that refuse to use consortia are

the ones most likely to suffer competitively:
z Coase-localized (traditional) software companies cannot easily

compete with free-market consortia working the same problem
z Lack of participation in global consortia limits employee abilities to

understand and apply viable low-cost consortium options

� Refocusing and restructuring is needed
� The maximum-value software business structure:

z Maximize use of, and participation in, consortia
z Discourage attempts to compete with of consortium-based software
z Focus non-shared  work and creativity primarily on difficult, unique,

and high-payoff innovations
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Example of a Maximum-Value Architecture

Layer 4 1HZ�$SSOLFDWLRQV
— Proprietary or cooperative —

Layer 3 ([SORUDWLRQ
— Allows reassignment as proprietary code (e.g., BSD) —

Layer 2 6KLHOG
— Ownership-preserving licenses (e.g., LGPL) —

Layer 1 ,QIUDVWUXFWXUH
— Mixed cooperative and consortia licenses (e.g., GPL, LGPL, BSD) —

Infrastructure: Software whose value increases as it is more widely shared

New Applications: Software that is unexpected, or solves a hard problem
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How Does Maximum-Value Affect Networks?

� Assertion
   The most economical design for a global network is to

use cooperatively developed software for those parts
that are the most widely shared, and proprietary
software only for those parts that must remain unique.

� Why?
� Cost: Using global communities to support globally

shared components keeps support costs linear
� Stabilization: Competing interests of global network

users create massive resistance to arbitrary changes
� Security: Distributing even trivial secrets in globally

available software components dramatically increases
risk of discovery. Using only cooperatively developed
software helps enforce open design for all participants.
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The Dark Side

� Networking also works for the bad guys!

� Self-assembling groups of attackers can:
� Learn more rapidly when earlier ploys are uncovered
� Explore and develop new attacks methods more quickly
� Operate effectively on very small budgets
� Co-opt naïve regions of the Internet for more power
� Automate attack modes to devastate slow responders

� The result is an on going arms war
� Groups that accept only traditional “turtle tactics” will be

marginalized and become about as relevant as… turtles.
� Groups that fully embrace the competitive advantages of

using cooperative development can continue to thrive
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Software Selection as Ecology

� Angler fish…
� Are extremely dangerous to certain classes of fish
� Capture those fish by dangling highly realistic baits
� Are an unavoidable consequence of a complex ecology
� Can mostly be avoided by increasing sensors & analysis

� Malicious component creators…
� Are extremely dangerous to certain classes of users
� Capture those users by dangling highly realistic baits
� Are an unavoidable consequence of a complex ecology
� Can mostly be avoided by increasing sensors & analysis

� Are other solutions v iable?
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Options for Avoiding Malicious Fish (1 of 2)

� Option 1: Stop eating
� Consequences: Starvation
� Conclusion: Not a very good solution

� Option 2: Eat only food you have grown
� Consequences: Severely restricted, nutrient-poor diet
� Expansion helps, but too much expansion recreates the

original problem of uncertain origins of food supply
� Conclusion: Possible, but costly if done right

� Option 3: Certify your food
� Consequences: Good solution for non-malicious food
� Problem: Malicious users can almost always circumvent
� Conclusion: Helpful, but not a complete solution
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Options for Avoiding Malicious Fish (2 of 2)

� Option 4: Increase sensors & analys is
� Certification alone does not address real-time threats
� Active sensing (“sight” and “smell”) looks for subtle real-

time clues to malicious intent (e.g., does that tasty fish
have a long line attached to it?)

� Active analysis (memory, alertness to subtle changes,
and looking for unexpected consequences) allows leads
from senses to alert users in real-time

� Conclusion:
� Dropping out fails (results in “capabilities starvation”)
� Certification helps, but is not enough when truly

malicious threats exist within the software ecosystem
� Only improvements in real-time sensors and analysis

provide a viable route for keeping up in the long term
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Why Not Develop Using All Cleared People?

� This is a variant of “ grow your own”

� Problem:
� The single biggest source of security vulnerabilities in

new software is unintended errors, not malicious acts
� Developing in a pure classified environment can actually

result in a dramatic increase in vulnerabilities due to:
z Relative inexperience of the coders (selected for clearability, rather

than for maximum expertise)
z Far too few threads in the development “fabric” (too easy for a

minor error to have major consequences, and to go unnoticed)
z Attractiveness of such singular sites to malicious intrusion (the act

of coding securely makes the site appear unusually “tasty”

� Conclusion:
� Not a good idea!
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An Alternative Approach to Mili tary Software

� An alternative approach:
� Use cleared people to select, validate, and structure

components captured from the broader ecology
� Keep new, unique coding to a minimum
� Wherever possible, rely on strengths of the big ecology

� Advantages:
� Components selections hugely increase the capabilities

of the developers, without revealing their intent
� Selection and evaluation become critical, but also can

be reused (the “King’s taster” approach)
� Small prototyping first (“cautious tasting”) lowers risk
� Availability of source code becomes a huge advantage

in this strategy, as it allows better real-time analysis
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Nine Open Source Security Issues

(1) Mutual Software Trust (MST)
(2) Rapid Responses to Novel Cyber Attacks
(3) James Madison “ Balance of Developers”
(4) Competitive Pressure (Riding the Wave)
(5) Practical Second -Sourcing of Software
(6) Network and Enterprise Self-Auditing
(7) Better Use of Security Research Dollars
(8) Market Survival of Security Applications
(9) Appliances: “ Hardened” Open Source
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(1) Mutual Software Trust (MST)

� The problem:
� When groups with varying level of trust of each other

must work together, how can they share infrastructure?

� A lesson from history:
� The simple handshake developed first as a way of

proving that neither side carried a weapon
� For software, similar “open inspection” principles apply

� A partial solution: Mutual Software Trust
� Mutual Software Trust (MST) means that all software

resources shared by all parties must be fully exposed for
potential inspection by any of those parties

� Open source groups are inherently trust based, so they
provide a good starting point for building MST
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(2) Rapid Responses to Novel Cyber Attacks

� The problem:
� Closed repair processes: Identify => describe => transmit

=> prioritize => interpret => repair => redistribute

� It is diff icult to accelerate a closed repair processes
� Each process step has a significant risk of added error

� The open source response option:
� For critical software, develop in-house source expertise
� Reduce repair process to: Identify => repair => redistribute

� The potential for rapid respon se ex ists if:
� The expert team is skilled at rapid response
� The team was trained on the right source code
� Rapid software redistribution processes also exist
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(3) James Madison “ Balance of Developers”

� Question: Who controls your security?
� Would you trust your security to a single individual?
� Would you trust your security to a single company?
� Would you give up the right to question your overseers?

� James Madison & Balance of Developers
� The James Madison principle of Balance of Power is

based on the inevitable tendency of nearly all people to
try to maximize their power over others

� Sharing power limits abuse of power by any one group
� In software, individual companies and programmers can

suddenly wield enormous power over information, and
thus over people. (Example: Electronic-only elections)

� Consortia development extends the Madison principle
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(4) Competitive Pressure (Riding the Wave)

� The problem:
� Cooperative methods increase development speed:

z Free-market “invisible hand” increases effective IQ of groups
z Inherent incentives to build adaptable software reduce waste
z Self-assembling specialty groups minimize fossilization risks

� Pure closed-coding cannot match free-market speeds
� The danger: Don’t build piers while others ride waves.

� The solution:
� Keep all software solutions flexible and adaptable
� Move to open standards to support rapid migration
� Don’t fritter security on trying to perform mathematically

impossible validations of huge software systems
� Instead, concentrate closed security efforts on linchpin

points of the overall distributed suite of software
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(5) Practical Second-Sourcing of Software

� The problem:
� In hardware, second sources helps control costs & risks
� DoD has largely abandoned second-sources in software
� Reason: Interfaces are often closed & hard to replicate

� Open source and adaptabili ty
� Cooperative methods encourage adaptable solutions
� Consequence: Low-cost emulation ability rises over time
� Example: It is now estimated that 1/3 of all office users

could be switched to open source without realizing it.
(Wade Roush, Technology Today, Sept 2004, p. 50-56)

� Implications for security:
� Provides alternatives & legitimizes legacy sole-source
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(6) Network and Enterprise Self-Auditing

� The problem:
� Noise-level cyber attack rates are accelerating rapidly
� Serious cyber attacks are mutating at alarmingly speeds
� Enterprises must respond rapidly to such changes

� Open source and self-auditing
� Open source developers are strongly motivated by self-

interest (personal use of jointly developed software)
� Such self-interest translates into a keen interest in both

self-testing and mutual testing of cyber security

� Implication
� Open source auditing tools are important resources for

identifying new examples and classes of cyber attack
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(7) Better Use of Security Research Dollars

� One of the four largest uses of open
source for the DoD is research

� Open source in research provides:
� Cost-effective access to prerequisite infrastructure

(e.g., Beowulf supercomputers)
� Easy adaptation of critical components to new uses
� A powerful way to communicate research results

(“executable research papers”)
� Easier cross-training of researchers in software design

� At a deeper level, OSS
parts provide a lattice for
new concept exploration:

Tool
Tool

Tool

  C
omplexity

= “Closeness” in cost/time

Researcher
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(8) Market Survival of Security Applications

� The problem:
� Functionality-obsessed commercial markets can drive

security-focused tools and languages out of the market
� The result: Networks that lack the tools needed to create

secure, highly reliable local and distributed applications

� The solution:
� Cooperative development allows communities with

strong interest in security and reliability to exist and
even thrive, even when overall markets are functionality-
obsessed. (An example: Rural electric cooperatives).

� Self-selection of the supporting cooperatives further
enhances security by creating highly cohesive groups

� Examples: OpenBSD (security), GNAT(Ada)
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(9) Appliances: “ Hardened” Open Source

� The problem:
� All forms of software are… well… soft
� Security tries to “harden” software through techniques

such as encryption, but…
� …encryption is ultimately more a form of hiding than

securing. It’s like putting diamonds in bigger and bigger
mud puddles when what you really want is a steel safe

� Where can an enterprise find the cyber equivalent of a
cost-effective, physically hardened, truly secure safe?

� The solution:
� Dropping hardware costs are creating an explosion of

appliances — specialized, physically secure “ility boxes”
� Appliances require extreme operating system reliability
� Guess what operating system most appliances use?
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Conclusions

� Open source software is part of security
� Not an antagonistic relationship
� Complex and synergistic — not a simple either/or choice

� Open source is useful for building trust
� Trust is a necessary component of the security equation

(part of the cyberspace equivalent of the “rule of law”)
� Building trusted infrastructure refocuses security efforts
� Failures of trust in cyber infrastructure can have major

(and negative) real-world economic consequences

� Goal: Synergistic use of open and closed
� Open source helps establish trusted infrastructure
� Closed source helps push innovation forward

For more info (& spyware help) see http://terrybollinger.com
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Bollinger Literary Terms (BLT)

Copyright 2004 by Terry Bollinger. Bollinger Literary Terms (BLT)
License v1.1 applies: (1) Any reader of this work, including any
incorporated entity, is granted the right to unlimited redistribution of
this work in any medium or language, provided only that the
meaning of the entire work and of this license remain complete and
accurate in the best judgment of the redistributor. (2) Readers may
at their own discretion redistribute this work either for profit or free.
(3) If this work is bundled with other materials, the redistribution
rights granted by the BLT license apply only to this work. (4) If brief,
fair-use quotations of text or figures from this work are clearly
attributed to this work by title and author name, the redistribution
rights of the BLT license do not apply to them and do not need to be
mentioned. (5) The original author of this work retains the right to
repackage this work and subsets of this work under non-BLT
licenses, with the provision that such secondary author licenses
must not attempt to remove or diminish the redistribution rights
granted to readers by the original BLT version of this work.
Secondary author licenses that attempt to remove such rights are
invalid and cannot be enforced.


